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FOREWORD

This final report was prepared by the Power Systems Division of United Technolo-

gies Corporation (PSD/UTC) under contract DEN3-149 "Low NO x Heavy Fuel Com-

bustor Concept Program". It encompasses the work associated with the base

program (23 October 1979 to July 1981).

Contract DEN 3-149 was sponsored by the Department of Energy under the admini-

stration of the National Aeronautics and Space Administration/Lewis Research

Center (DOE/NASA-LeRC). Donald Schultz of NASA/LeRC was the technical

manager.

The Power Systems Division Program Manager was Fred Kemp and Technical Mana-

ger was Richard Sederquist. Paul L, Russell was Primary Investigator for the

project at _,he Government Products Division of the Pratt & Whitney Aircraft

Group. He was assisted by George W. Beal and Bruce Hinton.
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A_STRACT

CR165512
DOE/NASA/0149-1
GTR-3236

This report describes a gas turbine technology program to improve and optimize

the staged rich-lean low NO x combustor concept. Subscale combustor tests were

run to develop the design information required to optimize the fuel preparationt

rich burn, quick air quench, and lean burn steps of this combustion process.

High combustion efficiency, low smoke and NO x emissions in the range of 50 ppm

were achieved with distillate, residual and high fuel-bound nitrogen coal derived

fuel. The program provided the information required for the design of high

pressure full-scale gas turbine combustors capable of providing environmentally

clean combustion of minimally processed and synthetic fuels. Liquid fuel atomiza-

tion and mixing, rich zone stoichiometry, rich zone liner cooling, rich zone resi-

dence time, and quench zone stoichiometry were identified as very important con-

siderations in the design and scale-up of the rich-lean combustor.
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SUMMARY

CR165512
DOE/NASA/0149-1
GTR-3236

This report describes results of a systematic evaluation of bench-scale hardware

concepts intended to provide technology for environmentally clean combustion of

minimally processed fuels, as well as synthetic fuels. Pratt & Whitney Aircraft/

Government Products Division (P&WA/GPD) experience and results of computer

studies were drawn upon to select the concepts evaluated in this program. Twelve

concepts were initially designed and included many variations of basic strategies

sw _ as rich/lean combust;on, preburning, premixing, and rich product recirula-

tion. An assessment of the pollutant levels of individual concepts was made using

a combined computer model including combustor aerodynamics, emission predictions,

and fuel droplet vaporization. The design approach considered cost, time, and the

interchangeability of parts within the same rig test duct.

The combustor testing was conducted within a cylindrical pressure cell with

instrumentation providing for measurement of critical combustor parameters

including exhaust gas analysis. A data reduction program was formulated for

on-line data analysis and provided rapid cost effective technical knowledge

concerning the particular configurations being tested.

During the course of testing the various concepts, durability problems were en-

countered which delayed the work effort and this unpredictable cost impact pre-

vented the testing of all concepts. However, enough concepts were evaluated to

supply the necessary design information for the design of full-scale combustors

which will operate below the pollutant limits established for industrial gas turbine

engines.

An extensive analysis of all test data was carried out to determine the best overall

configuration. The results were very promising and are summarized as follows:

NOx goal achieved and surpassed .(50 ppmv range obtained with all
fuels).

High Burner efficiencies obtained by control of overatl fuel_air ratio.

-1-
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• Smoke levels below SAE 20 achieved for all fuels.

• Excellent Burner Pattern Factor of 0.045 achieved.

The major conclusions from the test effort are:

CR165512
DOE/NASA/0149-1
GT R- 3236

A water-cooled rich zone wall has little or no effect on exhaust emissions,

Fuel preparation is very important in rich combustion, especially for
controlling smoke levels.

NOx levels are independent of pressure in a rich/lean combustion sys-
tem.

Control of lean zone stoichiometry is required to control CO levels.

NOx levels show a strong dependence o_ rich zone residence time and
stoichiometry,

Sufficient information was obtained to design a full-scale combustor which

will have pollution levels below the EPA requirement.

-2-
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SECTION I

INTRODUCTION

CR165512
DO E/NASA/0149-1
GTR-3236

Tile program discussed in this report has provided an opportunity to study rich-

lean combustion processes and their" effects on pollutant levels. Tile work perform-

ed was part of the Department of Energy/National Aeronautics and Space Admini-

st_'ation Lewis Research Center (DOE/NASA-LeRC) "Low NO x Heavy Fuel Com-

bustor Concept Program." The intent of this program was directed toward the

development of a fuel flexible combustor which achieves published Environmental

Protection Agency (EPA) emissions goals. Emphasis was placed on NO x reduction

techniques for all fuels, including fuels with high levels of fuel-bound nitrogen.

A continued development of combustion technology is needed to provide the users

of utility and industrial gas turbine engines the capability of operating in an

environmentally acceptable manner. Results from this program could be used to

provide design tools necessary for the full-scale combustion of a variety of fuels,

including residual, synthetic and blends of each with distillate fuel.

Rich-lean combustion proved to be an effective technique for achieving the goals of

this program. In addition, techniques have also been developed which help to

r'educe smoke levels so that program goals were achieved.

In this exploratory development program, the overall goals were defined by the

contractor (Table I) with the primary emphasis on NO x reduction techniques. The

efl'ort was accomplished by completion of the tasks defined below.

Task I - Provided for the preparation of preliminary combustion design drawings,

test rig assembly drawings, and a test program plan.

Task II - Provided for .the generation of final design drawings of the combustion

components, test rig assembly, and all rig instrumentation.

-3-
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Task III - Provided for the fabrication and procurement o1 all parts required for"

baseline testing and installation o1" test equipment in the test stated. Task III has

been expanded to include fabrication of that hardware necessary to Collducl fuel

property variation testing under Tasks IV, V, and VI.

Task IV - Experimental testing of tile hardware designed in Task II using residual

fuel, as well as blends of distillate and residual fuels.

Task V - Experimental testing of selected hardware using distillate fuel, as well as

blends of distillate and residual fuels and distillate and synfuels.

Task VI Experimental testing of selected hardware using synfuel, as well as

blends of synfuel and distillate fuels.

Task VII - Provided for design analysis using the derived technology gained from

combustor testing under Tasks IV, V, and VI.

Task VIII - Identified and documented the characteristics of combustor designed

hardware that materially influence integrity and performance.

Task IX - Provided for tectlnical, financial, and schedular reports, as required.

This report documents the work accomplished under Contract DEN3-149 and pre-

sents the analysis of the results.

-4-
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TABLE I - DESIGN EMISSION SPECIFICATIONS

CR165512
DOE/NASA/0149-1
GTR-3236

Pollutant Maximum Level

Oxides of Nitrogen

Sulfur Dioxide

Smoke

75 ppm @ 15_o O2 _

150 ppm @ 15_ O2 _'_

S.A.E. Smoke Number = 20_*

Operating Conditions

All

All

All

These levels are subject to the constraints and corrections contained in the
Environme-_tal Protection Agency Proposed Rule for Stationary Gas Turbines,
Federal k_jis_er, 40 CFR Part 60, pp. 53782-53796, October 3, 1977 which .........
rule is hereby incorporated by reference, i |

Since the conversion of fuel sulfur to sulfur oxides is total, this design
specification represents a practical limit of fuel sulfur content of approxi-
mately 0.8_.

*** The. smoke measurement technique shall be in accordance with SAE recom-
mended practice as contained in "/-qrcraft Gas Turbine Engine Exhaust Smoke
Measurement, Aerospace Recommended Practice 1179, May 4, 1970" and hereby
incorporated by reference.

L

-5-
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SECTION II

SUBSCALE COMBUSTOR TESTS

CR165512
DOE/NASA/0149-1
GTR-3236

A. BASELINE CONFIGURATIONS

Twelve configurations were initially selected for baseline testing. In addition, two

configurations were utilized near the end of the test program. Table II lists the

14 configurations including figure identification when a figure is being used for

configurative delineation.

TABLE 11 - BASELINE CONFIGURATIONS

Figure
Configuration Description No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Baseline RBQQ* 1

RBQQ -- Short Rich Zone 11

RBQQ -- Small Dia. Quench Zone 17

RBQQ -- Large Dia. Quench Zone 20

RBQQ -- Non-Metallic Linear 25

Catalytic Fuel Preparation --

Preburner Fuel Preparation 31

Variable Geometry 32

Graduated Air Addition 35

Rich Product Recirculation --

Rich Product Recirculation with
Alternate Quench --

Rich-Lean Annihilation --

RBQQ -- Very Short Rich Zone 37

RBQQ -- Conf. 13 with Air Blast
Fuel Nozzle and Swirler 40

*RBQQ -- Rich-Burn/Quick-Quench Combustor

-6-
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Configurations 6, 10, 11 and 12 d!d not undergo baseline testing due to cost

limitations which resulted from durability problems encountered early in the test

program.

All other configurations underwent testing on one or all of the fuels listed in Table

III including some blencls of these fuels.

TABLE 111 FUEL PROPERTIES

ERBS

Viscosity (CS) @ 100°F (38°C) 1.0

%FBN 0.02

Specific Gravity 60/60°F (15°C) 0.831

% Carbon 87.0

% Hydrogen 12.5

% Sulfur 0.10

InitialBoiling Point (°F, °C) 310,154

Heating Value (Btu/Ib, j/kg) 18,323;
42.7 x 10 s

Residual

200.0

0.3

0.955

87.5

11.3

0.22

=600,315

71,850;41.6 108

Synthetic

3.56

0.74

0.98

86.1

9.00

0.028

356,180

16,730;
38.9 x 10s

B. CONFIGURATION DESCRIPTIONS AND RESULTS

A short summary of each configuration tested and test results are in_:luded in this

section. Table IV gives a complete breakdown of minimum NO x levels obtained for

all configurations tested. Table V is a test summary of all configurations evaluated.

Testing was done at 3.4 atmospheres unless otherwise specified.

-7-
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TABLE IV. TEST

Tinier

f/.__aa (°F,°C) ERBS

0.012 500,260 22/1.56

0.016 600,315 26/1.57

0.021 700,371 36/1.55

0.024 750,399

Cpri = Primary Zone

SUMMARY OF

CONFIGURATION ID

NO x at

0.9/0.1

40/1.49

35/1.59

42/1.55

- 53/1.66

Equivalence Ratio

CR165512
DOE/NASA/0149-1
GTR-3236

ERBS/SRC-II FUEL BLEND

15_ O2/¢pri

0.7/0.3 0.5/0.5 0.1/0.9

49/1.52 35/1.55 56/1.45

32/1.56 37/1.53 37/1.43

49/1.52 53/1.58 47/1.40

55/1.54 65/1.52 68/1.47

SRCII

44/1.60

m

-8-
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1. Configuration 1 - Baseline Rich-Burn/Quick-Quench Combustor (RBQQ)

Summary

Figure 1 illustrates the original geometry of this configuration. Early tests

with this configuration resulted in durability problems in the rich zone.

Initially this configuration utilized a premix tube (Figure 2) to prevaporize

the fuel; however, flashback occurred and the premix tube was abandoned in

favor of a carburetor tube with a recessed fuel nozzle and recessed .air

swirler as shown in Figures 3 and 3A. This configuration displayed the best

overall performance of any concept tested, and easily met and surpassed the

NO x goals set forth in the contract.

COMBUSTOR SUPPORT FRAME U

. / . | . q
........... • '''''' "*''*" "* .... ''' ...... ',,_ ........ ' "q /COMBUSTQR

g I .AS,_ET

_,J IN

-- - --OiA RZ_= - -- mmZ-----f o|AR_-- - -- mARE_=--
(12.7 CM) mmmm _ (7.82 CM) (12.7 CM)

j-

(Ix._l

Figure 1. Configuration 1 Baseline Rich-Burn/Quick-Quench
(RBQQ) Combustor
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IN.

2.0 IN. OIA. . . 1.4 IN..
(5.08 CM) DIA

1 ,
3.800 IN.

5.100 IN.

REF

Figure 2. Configuration 1 - Premix Tube

68-82

FL'iELPREPARATION

PRIMARY
METErIED
AIR

AIR

RICH ZONE QUENCH AND LEAN ZONE

QUENCH
SECONDARY-
AIR

FUEL
NOZZLE 68-11!

Figure 3. Configuration 1 - RBQQ Combustor with Recessed Air Swirler
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Figure 3A.

I

I

Configuration 1 - Recessed Air Swirler Assembly

Five iterations were required to fix the durability problems associated with

the rich zone of this combustor and are described as follows:

• Configuration 1 - Same as Figure 1 but with the carburetor tube re-
placed with a premix tube.

• Configuration 1A - Premix tube replaced by recessed air swirler.

• Configuration 1B - copper cooling coil added to reduce metal tempera-
tures.

• Configuration lC - thicker rich zone line_" material adcLe_cL_

• Configuration 1D - Water cooled rich zone utilized.

Only the results of Configuration 1D are shown in this report due to the rich

zone damage to the others incurred during testing, which created some doubt

as to the data validity. All results are summarized in the Comprehensive

Data Report (GTR-3235).
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NO x Levels - Figure 4 displays the NO x emissions data taken during baseline

testing on residual fuel. Note that the minimum NO x levels are at an equiva-

lence ratio of approximately 1.55 in the rich zone.
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Figure 4.
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0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

RICH ZONE EQUIVALENCE RATIO 68-61

Configuration 1 - NO x Emissions with Residual Fuel

Tests with Other Fuels - Tests were conducted to determine the effects of

fuel properties on burner performance and emissions. Figure 5 shows data

for a 90/1096 mixture of Residual/ERBS (Experimental Referee Broadened-

Specification) fuel; for properties see Table III. The results indicated no

appreciable difference in the NO x ,bucket" as compared to straight residual
fuel.
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Figure 5. Configuration 1 - NO x Emissions with 90/10 Residual/
ERBS Fuel

Figure 6 shows results for a 70/30 mix of Residuai/ERBS fuel. At this mix-

ture ratio, a general flattening of the NO x bucket was observed and increas-

ing equivalence ratio did not show a dramatic increase in NO x.

Test results with a 50/50 mixture of Residual/ERBS fuel are shown in Figure

7. These results were very similar to the 70/30 mixture test results.

Tests were. also conducted with ERBS, and SRC-II (Solvent Refined Coal from

the Pittsburg and Midway Coal Mining Company, Denver, Colorado)fuels and

blends of these. Table IV gives NO x results obtained with this configuration.
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Configuration 1 - NO x Emissions with 70/30 Residual/
ERBS Fuel

300

!
250

o

_, 200
I-.-
Q

I-

,,0 150

o

100

_ 5Q_

o
Z

0.-3

INLET TEMP

OF, °C

(_ SO0, 280

600, 315100, 371

0.9 1.1 1.3 1.5 1.7 1.9

RiCH ZONE EQUIVALENCE RATIO

Figure 7. Configuration 1 - NO x
ERBS Fuel

[ [ [
2.1 2,3 2.5

6_-48

Emissions with 50/50 Residual/

-23-

L ..........



Power Systems Division CR165512
DOE/NASA/0149-1
GTR-3236

Carbon Monoxide Levels - The CO levels obtained with this configuration on

residual fuel are shown in Figure 8. It can be seen that overall fuel/air ratio

has a dramatic effect on the levels of this pollutant, minimum levels are

obtained when the lean zone downstream of the quench module is kept above

0.021 fuel/air ratio. Similar levels were obtained with all fuels tested.
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I 1 I I I I I I
0.mi 0.010 0.01S 0,020 0.02S 0.030 0.0ZS o.040

OVERALL FUEL/AIR RATIO 6_-_1

Figure 8. Configuration 1 - CO Emissions with Residual Fuel

Burner Exit Temperature Pattern - The pattern factor for this configuration

was 0.060 at simulated idle conditions and 0.045 at high power. Figures 9

and 10 display a very uniform temperature pattern for this configuration.

Temperatures outside the circle are outside o_ the hot gas stream.
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Figure 9.

Figure 10.
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Burner Efficiency - Efflclencies greater than 99_o were evident when exit

fuel-air ratios were 0.021 and greater for all fuels tested, Lower efficlences

were obtained when the exit fuel/air ratio was less than 0.021. This problem

can be solved by the addition of a tertiary zone to the burner to allow for

CO oxidation in the lean zone when a full-scaled combustor design is required.

2. Configuration 2 - RBQQ Combustor with 12-inch (30.5 cm) Rich Section

Summary

This configuration was Lhe same as Configuration 1 with the exception of the

12-in. vs. 18-in. (30.5 cm vs. 45.7 cm) length of the rich zone. Figure 11

illustrates the geometry of this configuration. Durability problems were also

encountered with this configuration and eventually a water cooled rich zone

had to be utilized to prevent front-end combustor damage.

This configuration displayed low NO x values with ERBS fuel similar to Con-

figuration 1; however NO x levels with SRC-II and residual fuels were slightly

higher due to shorter rich zone residence times.

EXTERNAL

METERED PRIMARY

ZONE AIRFLOW

' ' I ]..e--II.000 IN. 1.100 IH.--I"-",_ 0...=----10.337 IN._I.UH trl.'--'="l

6_4-84

Figure 11. Configuration 2 - RBQQ Combustor with Short Rich-Zone
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Figure 12 displays NO x levels obtained with three different fuels (ERB5!

5RC-II, and Residual) vs. front-end equivalence ratio with the SONICORE

086H fuel nozzle, manufactured by Sonic Development Corporation, Upper

Saddle River, New Jersey. Figure 13 displays the same type of data taken

with the 125H SONICORE fuel nozzle. A first impression of this data is that

it appears to be scattered; however, an analysis indicated that as the front-

end equivalence ratio was varied, the hot residence times were changing and

as burner inlet pressure was increased a dramatic effect on residence times

was evident. Figure 14 displays some of the data taken (in the ranges indicat-

ed) with NO x levels plotted vs. rich-zone residence times. It can be seen

that the residence times played a very important role in the NO x levels
obtained.
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NO x levels were found to be very dependent on fuel preparation. This can

be seen in Figure 15 where data with a bent fuel nozzle tip is compared to

data with a geometrically correct fuel nozzle when burning ERBS fuel.
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Figure 15.
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I l I 1
20 40 60 80

RICH ZONE HOT RESIDENCETIME -MILLISECONDS 68.a5

Configuration 2C - NO x Emissions vs Rich Zone Residence

Time (Bent vs Straight Nozzle)

Carbon Monoxide Levels - The CO levels obtained with this configuration were

similar to those obtained with Configuration 1. Again it was evident that the

fuel/air ratio at the exit of the quench zone had to be kept above 0.021 in

order to obtain minimal CO levels.

,4

Smoke Levels - Considerable effort was made with this configuration to reduce

smoke levels. An analysis of early smoke data taken with this configuration ....

showed that smoke levels were affected by the atomizing fluid/fuel ratio.

This data is shown in Figure 16 for' three burner pressure levels. It can be

seen that the residual fuel smoke levels were not affected; however, the
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atomizing fluid used was cold nitrogen (since high pressure hot air was not

available at the test site) and it is believed that this had an adverse effect

on the atomization of the highly viscous residual fuel. SAE smoke numbers

below 20 were obtained with ERB5 and SRC-II fuels when sufficient atomizing

fluid was used.
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Unburned Hydrocarbon Levels - The UHC levels were minimal for this con-

figuration on all fuels tested.

, Configuration 3 - RBQQ Combustor With Small Diameter Quench Zone

lS_mmary,

Figure 17 illustrates the original geometry of this configuration. The devel-

opment and test results of Configuration 1 and 2 led to utilizing the water

cooled rich zone and recessed swirler instead of the premix tube as originally

planned, This configuration was tested to determine the effects of rich-zone/

quench-zone area ratios on NO x emissions. The slot area for the quench air

was the same as for Configurations 1 and 2. This configuration was only

tested on the baseline residual fuel and re3idual fuel with pyridine added (for

fuel-bound nitrogen effects).
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,.(Te._oP.c.A.Y
zo.EA2.FL0W / cO.BUSTO.Su.O.rF.A.E []el

Z G,uos. BE
,, L • _- : , | ,

_]_ = =il il = 1|'"""

j t _ _v ,j,. _L_JL._-------- ,j,. L

.-"1 [ _-" " , ---UIA. HEF,(12. " " mmmm' OIA REF -----u_ n=r.--

I ,o,,,-,/-Ih " ,i .......
I I-,.-_1- t.6o_sN, 4.oooItt._-_.. ----'l I',--------f- _.oooleJ. I I

| ! .'.. _':"._'". • .... -'. ':'."."..-'=_.-. •...':;:-=.'.t';':":-;_:o.°°'":T:

Figure 17. Configuration 3 - RBQQ Combustor with Small Diameter
Quench Zone

Results

NO x Levels - With this configuration the levels were slightly higher than

those obtained with Configuration 1. Figures 18 and 19 display data of NO x
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levels vs. rich zone residence time with residual fuels containing 0.4_o FBN

and 0.5_ FBN, respectively. The cesulting minimum NO x levels were on the

order of 60 ppm.

CO Levels - The levels were similar to Configuration 1 with minimum levels

occurring at overall fuel/air ratios greater than 0.021 at the burner exit.
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4, Configuration 4 - RE,(_Q Combustor With Large Diameter Quench Zone

Summary

Figure 20 illustrates the original geometry of this configuration. Changes

made before testing were the same as with Configuration 3, the addition of'

water cooling and the recessed swirler. This test was conducted also to

determine the effects of rich-zone/quenc-h-zone area ratios on NO x levels.
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Figure 20. Configuration 4 -RBQQ Combustor with Large Diameter
Quench Zone

Results

NO x Levels with this configuration were slightly higher than Configuration

1 and slightly lower than Configuration 3 with minimum levels on the order of

55 ppm with residual fuel. Figures 21, 22 and 23 display data obtained of

NO x levels vs. rich zone residence time with residual fuels containing 0.496

FBN and residual with 0.5_o FBN fuels, respectively.

CO Levels - The results were similar to Configuration 1 at overall fuel/air

ratios above 0.021.

Other Comments - Some heavy coking in the front end of the combustor was

evident after test completion. The reason for this is unknown.
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5 Configuration 5 - RBQQ Combustor With Non-Metallic Liner

Summary

]-he carbon-carbon liner, shown in Figure 24, was tested under fuel rich

conditions in the RBQQ combustor and operated satisfactorily for six hours at

temperatures over 4000°R (2222°K), but failed rapidly after a short period of

unstable operation. The most likely failure mechanism was judged to be loss

of the oxidation resistant coating during unstable operation followed by reac-

tion of the carbon with H20 and CO2. The test results and supporting

analysis show that for high temperature applications carbon-carbon will

require a suitable oxidation resistant coating, even when operated at fuel rich

conditions.
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Figure. 24. Photograph of Carbon/Carbon Liner

(WO-1247)

The liner, shown schematically installed in Figure 25, was approximately 5-in.

('12.7 cm) in diameter, 9-in. (22.9 cm) long and was located in the con-

vergent section of the rich-burn zone. The liner had a diffusion bonded

silica carbide coating on the inside and outside diameter and end areas for

oxidation resistance and a zirconium oxide thermal barrier on the inner dia-

meter and end areas•
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------1
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Figure 25. Configuration 5 - RBQQ Combustor with Non-Metallic Liner
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Results

The liner operated satisfactorily without apparent deterioration for approxi-

mately six hours. The primary zone temperature was approximately 4000°R

(2222°K) and combustion pressure varied from 50 to 125 psia (343 to 859

kPa). After six hours of testing, a blowout occurred followed by a hard

relight and a short period of unstable operation. As combustion was restab-

lished, a deterioration of the carbon-carbon liner was noted visually. The

highly luminous spalling and erosion of the liner appeared to last approxi-

mately two minutes. After this period_ test conditions appeared normal and

testing was continued for an additional four hours.

After ten hours of testing, inspection of the rig revealed that the liner had

completely disintegrated up to the flange which separated the uncooled portion

of the rich burn zone from the water cooled portion (see Figure 26). The

liner upstream of the flange was partially eroded on the exposed surface.
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Figure 26.

LINER,FOIT TEST

RIG CASE

Configuration 5C - RBQQ Combustor Non-Metallic Liner
Disintegration
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NO x Levels - Several fuels were tested with this configuration and tile NO x

levels vs. front-end equivalence ratio are shown in Figure 27 for these fuels.

Figures 28and 29 display NO x levels as a function of rich-zone residence
time.
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CO Levels - CO levels were again sl_own to be dependent on overall fuel/air

ratio with minimum levels occurring at values greater than 0.021.

Comments - COp. and H20 are considered to be completely stable molecules;

however, at elevated temperatures either may react with carbon to produce

CO, i.e.,:

CO2 + C -_ 2CO + 41.25 Kcal/mole (1)

H20 + C -_ Ha + CO + 31.4 hcal/mole (2)

Both reactions are highly endothermic. The resuIts of equilibrium calculations

showing the extent of the reaction as a function of temperature are shown in

Figure 29. As shown, at temperatures above 1500 to 2000°R (833 to 1111°K)

the carbon is completely reacted. As the concentration of COs relative to C

increases the temperature at which the carbon is reacted is reduced. This

trend is illustrated by comparing lines A and B of Figure 30. Addition of

water to COs makes the carbon even more reactive as seen by comparing lines

A and C. In practice, reaction rates may limit the rate at which the carbon

reaction proceeds.

Reactions (1) and (2) form the basis for the production of two types of

commercial fuel gasses, i.e., water gas and producer gas..Water gas is

obtained from the reaction of steam with a carbonaceous material such as coal

or coke. The fuel is brought to a high temperature by blasting it with hot

air after which the air supply is cut off and steam is injected. Producer gas

is generated by blasting deep hot beds of coal or coke continuously with a

mixture of air and steam. Typically reaction temperatures for production of

these gases range from 1800 to 2500°R (1000 to 1389°K).

It is judged that the most likely cause of the carbon-carbon liner" failure in

the RBQQ combustor was a failure of the oxidation resistant coating during

unstable operation followed by a water gas type .oxidation of the liner under

fuel rich conditions.
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6. Configuration 7 - Preburner Fuel Preparation

Summary

Figure 31 illustrates the original geometry of this configuration. Changes

made during testing to try and improve performance included using only two

instead of four fuel nozzles in the secondary fuel zone, as well as use of a

water cooled rich zone. This configuration displayed very poor performance

and was abandoned after several attempts to improve its operating character-

istics. -
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Figure 31.

5,047 IN, I 3,000 |N,
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(t23 CM) (7.0

Configuration 7 - RBQQ Combustor with Preburner Fuel Preparation

Results

7_

NO x Levels - These levels were very high and on the order of 300 ppmv for
ERBS fuel

Smoke - Smoke was highly visible at the rig exhaust.

Comments This concept was judged as needing extensive development effort

to meet the contract goals and was abandoned as this was not within the

scope of the program.

Configuration 8 - Variable Geometry Combustor

Summary

Figure 32 illustrates the original geometry of this configuration. The quench

module consisted of 8 openings, 4 of which could be closed off by means of

movable pistons within the module. Troubles with this configuration were

encountered during testing, for the pistons would freeze up in both open and

closed positions due to thermal growth. To add to this problem, it could not

be determined which pistons were opening and closing and how many were

operating proper!y. It was the opinion of the author that variable geometry
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devices would require a substantial development effort if they were I:o be

used in full-scale combustors for stationary gas turbines.

GJK Q75|,

5.041 IN,

OIA, REF, -- 5 047 I/I,

(12J CM)

- I.$001 N+ 4.000 IN. -

45 $WIRLER

RIG CASE

Figure 32. Configuration 8 - RBQQ Combustor with Variable Geometry

Results

NO x Levels - The NO x levels vs. rich-zone residence times for SRC-II and

residual fuels (with pyridine) are shown in Figures 33 and 34. Data obtained

with ERBS and residual fuel (without pyridine) was marred by the discovery

of a bent fuel nozzle tip after tests with these fuels.

CO Levels -The results levels were similar to Configuration 1 at fuel/air

ratios above 0.021 as expected.

Comments Due to the effort required to develop this concept, attempts to

fix the thermal growth problems were not attempted during the course of

these tests,
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8. Configuration 9 - Graduated Air Addition Combustor

Summary

Figure 35 illustrates the original geometry of this configuration. Water cool-

ing was added to the rich-zone walls for durability purposes. Smoke levels

were excessively high with this configuration and attempts to improve per-

formance were fruitless.

6.000iN. ! = 3.000tN._ 12.000in. -3.000,n___:.Io.337in. _- !_- i.000 In,----

i

J

Figure 35. Configuration 9 - RBQQ Combustor" with Graduated Air Addition

Results

NO x Levels - Figure 36 illustrates the NO x levels vs. rich-zone residence

time for this configuration for the fuels tested. To obtain the low NO x

levels, the preburners had to be operated at equivalence ratios between 1.80

and 2.50 which resulted in high smoke levels.

Comments - This concept showed no potential due to the high smoke levels

obtained.
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Configuration 13 - RBQQ with 6-inch (15.2 cm) Rich-Zone

Summary

Figure 37 illustrates the geometry of this configuration. This configuration

was added near the end of the test program to help define rich-zone resi-

dence time effects on the RBQQ emissions levels. Tests were conducted with

ERBS, SRC-II, Residual, and a 50/50 mixture of ERBS/Residual fuels.
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Figure 37. Configuration 13A - RBQO Combustor with Very Short Rich-Zone

Results

NO x Levels - Were similar to Configuration I on ERBS fuel only. The short

residence times of this combustor resulted in dramatic increases in NO x levels

with the SRC-II fuel (approximately 19o FBN) and moderate increases were

noted with the residual fuel (approximately 0.390 FBN). Figure 38 illustrates

this where NO x levels are shown vs. rich zone residence time. Figure 39

illustrates these NO x levels as a function of rich-zone end equivalence ratio.

From these curves it is observed that the NO x levels a+-e a strong function of
residence time in the rich zone.

CO Levels - CO levels were comparable to Configuration 1 and suggests that

z'ich zone length (in the ranges tested) have little or no effect on overall CO

levels.

Comments - This configuration showed potential for meeting NO x standards

when combusting residual and ERB$ fuel_, but does not. have acceptable NO x
levels with SRC-II fu_ls.
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10. Configuration 14 - RBQQ with 6-inch (15.2 cm)

Nozzle

CR165512
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GTR-3236

Rich-Zone and Air-Blast

Summary

This configuration is the same as Configuration 13 (Figure 37) with the ex-

ception of replacing the recessed swirler assembly and air-boost fuel nozzle

with the air-blast fuel nozzle and swirler shown in Figure 40. Tests were

conducted with ERBS, SRC-II and residual fuel. The main purpose of the

tests were to try and reduce smoke levels, especially with residual fuels.

lY806.16

Figure 40. Configuration 14 - Air Blast Fuel Nozzle Atomizer Configuration
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NO x Levels - Figure 41 displays results obtained for all fuels tested as a

function of rich-zone residence time. Figure 42 displays NO x versus

rich-zone equivalence ratio. These NO x levels were within the expected

range based on previous configuration results.

Smoke Levels - Table Vl summarizes the smoke levels obtained with this con-

figuration. Lower smoke levels were obtained with this fuel nozzle on resi-

dua! fuels than with the air-boost nozzle.
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TABLE Vl. TEST SUMMARY OF SMOKE DATA FROM CONGIGURATION 14

Fuel Burner Pressure Front-end Burner Inlet SAE Smoke

Type (psia, kPa) Equivalence Ratio Temperature (°F,°C) Number

ERBS 50, 343 1.56 700, 371 2.2

Residual 50, 343 1.56 700, 371 28.6

Residual 100, 687 1.50 700, 371 29.9

Residual 195, 1340 1.58 700, 371 19.5

SRC-II 50, 343 1.65 700, 371 11.9
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C. DATA CORRELATIONS
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This section describes the results of a comprehensive data analysis to determine

the most important parameters affecting burner emissions and performance. Some

of this section is also reported in the Comprehensive Data Report (GTR-3235) and

is presented in this document due to the importance of what the test data

revealed. The summary test data is contained in Table V.

1, Effect of Residence Time on NO x Emissions

Data from Configuration 1, 2, and 13 were compared due to similar geometries

in every location .except for rich zone length. Figure 43 displays these data

and reveals an extremely important relationship. Fuels containing fuel-bound

nitrogen can be burned with minimal NO x levels given sufficient residence

time.
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2. Effect of Quench Module Size on NO x Emissions
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Data from configurations 1, 3, and 4 were compared clue to similar geometries

except for quench module size. Figure 44 displays this data and reveals that

configuration 1 gave the lowest NO x levels in the bucket region of the curve.

This corresponds to a rich zone/quench zone area ratio of 2.77.
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Effect of Quench Module Size on NO x Levels

There was some concern over scaling a bench scale combustor to a full-scale

design, ancL the major concern with scaling was to insure proper mixing in

the quench module section. The parameters considered most critical when

scaling are the rich/quench zone area ratio, the pressure drop across the

quench module, the length/width ratio of the quench slots, and proper length

of the quench module to insure complete mixing. Analysis of data indicates

that if these parameters are matched, the mixing process will be very similar
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in both cases. The data from the three configurations did not display ma'oj__

differences, and NO x levels were within the goals of the program for all

three, which alleviates some of the concern over scaling.

o

Effect of Rich Zone Equivalence Ratio on NO x Emissions

Effects varied depending on type of fuel used and can be related to amount

of fuel-bound nitrogen (FBN). For the ERBS fuel (no fuel-bound nitrogen),

NO x decreased with increasing equivalence ratio up to equivalence ratios of

approximately 1.6 and remain relatively constant thereafter as shown in

Figure 45. For resic_ual fuel (0.390 FBN) a minimum NO x level occurs at an

equivalence ratio of approximately 1.55 as shown in Figure 46. The SRC-II

fuel (approximately 1.0_o FNB) also displays a minimum at a front end equiva-

lence ratio of approximately 1.55 as shown in Figure 47.

801 N_' P 345 kPA unless otherwise specified

'°I \
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Figure 45. NO x Emissions with Configuration 5 Combustor Using
Distillate Fuel
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4. Effect of Rich Zone Wall Temperature on NO x Emissions

Cooled walls down to 150°F (65°C) had minimal effect on NO x levels. This is

a very significant discovery in that it allows for longer burner life and use of

steam or water in a combined cycle power plant, where the lost heat can be

recovered. Figure 48 displays typical data for water cooled walls (200°F,

100°C range) and uncooled walls (2000°F, 1100°C ,'ange), as can be seen,

very little variation in NO x levels is evident.
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Effect of Liner Wall Temperature on NO x Levels

= 1.59

5. Effect of Overall Fuel/Air Ratio on CO Emissions

The majority of data indicated that at a 700°F (371°C) inlet condition, the

fuel/air ratio at.the quench module exit had to be kept above 0.021 to achieve

minimal CO emissions for all configurations. Figure 49 displays typical data
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taken during the course of testing, CO levels drop rapidly as the 0.021

fuel/air ratio is approached. This important finding provides valuable informa-
tion for a full-scale design.
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D. CONCLUSIONS - BENCH SCALE TESTS

The Rich-Burn/Quick-Quench Combustor concept has successfully demonstrated

substantial emissions reductions, representing improvements better" than the emis-

sions goals of the program for all fuels tested,

Emissions

NO x Levels - Given sufficient residence time, NO x levels can be kept in the

range of 50 ppmv by use of the rich-burn/quick-quench combustor geometry.
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This applies to fuels containing fuel-bound nitroger_; clean fuels require

shorter residence times. Front end equivalence ratios must be controlled and

kept in the range of 1.5 to 1.6 for optimum operation.

CO Levels - The mixture temperature at the exit of the quench zone for a.

RBQQ combustor must be kept high enough to provide for CO oxidation.

UHC Levels - The RBQQ comb_;_tor displayed no probtems in keeping these

emissions low.

Smoke Levels - If proper atomization and good front end mixing are present,

smoke i,vels can be kept in the invisible range.

Durability

Liner Wall Temperatures - Liners can be steam or water cooled for long life

with no detriment to emission levels.

Non-Metallic Materials - The coated carbon-carbon liner, manufactured by

Vought Corporation, operated satisfactorily for six hours at temperatures in

excess of 4000°R (2220°K). ' All planned test objectives were met. The

following observations were made after testing the carbon-carbon liner:

• Once the liner coating was lost, deterioration of the liner occurred very
rapidly.

• Conditions in the fuel-rich zone of the RBQQ _trongly favor carbon

oxidation by H20 and C02. Conditions are in fact much more severe

than those used for commercial preparation of water gas and producer
gas from carbonaceous materials.

• The reduced erosion of the liner in the water cooled section illustrates
the temperature dependence of the reaction process.
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• The use of carbon-carbon under fuel

oxidation resistant coating.

Performance
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rich conditions will require an

Burner Pattern Factor - The RBQQ displayed excellent pattern factor at both

low and high power, indicating a homogenous mixture at the burner exit.

Burner Efficiency - Efficiencies on the order of 100_ were displayed by the

RBQQ.

Combustor Geometry

Variable Area - Requires extensive development, but will be required if NO x

levels are to be kept to a minimum at all power settings. The use of multiple

staged (fuel on-off) rich-burn quick-quench elements for direct-drive con-

stant-speed gas turbine systems might be used to avoid the need for variable

geometry.

Rich Zone - Must be of sufficient length to provide proper residence times for

NO x reduction when operating on fuels containing bound nitrogen.

(_uench Zone - Must provide vigorous mixing to insure CO oxidation and

uniform temperature patterns.
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CONCEPTUAL ENGINE COMBUSTOR DESIGN .
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The successful techniques demonstrated during this program were used to concep-

tually design two full-scale combustors which could be incorporated into the United

Technologies Corporation FT4 industrtal stationary gas turbine engine. This

section describes the procedures used in preparing the designs and a description

of each concept is given.

A. REVIEW OF RESULTS

A review and analytical study of bench-scale hardware test results was con-

ducted to determine the optimum configurations for full-scale hardware that

had potential for reducing the production of pollutants, including smoke. Of

the concepts tested, Configuration ID gave the best overall performance and

emerged as the most successful in meeting the design goals. This concept is

the rich-burn/quick-quench (RBQQ) with a sufficient rich-zone length to

provide, residence time for reduction of NO x levels, including thermal and

fuel-bound sources of NO x.

Figure 50 illustrates the key 'features of the RBQQ combustor concept. At

the front-end of the burner, where fuel and air are admitted, a combustor

tube with a recessed air swirler is provided in which the fuel is atomized and

mixed with air to form a rich mixture. This mixture then enters into a

primary rich-zone of the combustor where combustion occurs without any

further addition of air or fuel. This mixture then travels into a dilution zone

called the quench section where very rapid dilution occurs with the remaining

airflow, which is further combusted in the lean zone. The success of this

concept resulted from the refinement of techniques, during the test program,

to solve durability problems and provide for good fuel and air mixing in the

rich-zone.
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Figure 50. Key Features of RBQQ Combustor Concept

The rich-burn/quick-quench combustor geometry, with the modifications which

were made during the test program, are shown in Figure 51. This geometry

resulted in minimal NO x levels. The recessed swirler was added during the

test program and replaced the original premix tube arrangement which had

durability problems. Water cooling was added to the rich section after struc-

tural damage occurred because of high flame temperatures and poor heat

transfer which resulted from low back side cooling air velocities.

RBQQ BENCH SCALE COMBUSTOR

RECESSED
SWIRLER

Figure 51.

'ER COOLED

ZONE QUENCHINE

RBQQ Bench-Scale Combustor Geometry

LEAN
ZONE

Tests were conducted at several simulated operating points, including elevated

pressures and temperatures. By controlling the amount of air that entered

the rich zone, it was determined that low NO x concentrations could be achi-

eved over a wide range of overall fuel-air ratios. Carbon monoxide levels

were high at overall fuel/air ratios below 0.021 and were minimal above this

level.
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B. DESIGN APPROACH
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The NO x reduction technology generated in the bench-scale tests was heavily

relied upon to provide data for the full-scale designs. In addition, the

information gathered on carbon monoxide and smoke production was used

extensively in the design approach. It was felt that the combustor sl_ould

reflect the requirements of conventional stationary gas turbine combustion

systems and should be capable of beingused in combined-cycle power plants.

The design requirements for the combustor are presented in Table VII along

with the applicable engine operating conditions.

TABLE VII. DESIGN REQUIREMENTS

Type Combustor: Can or Annular

Design Point Requirements:

Airflow

Inlet Temperature

Inlet Pressure

Pressure Drop: 3.0%

Exhaust Emissions:

Ba_e

257 Ib/sec (116.5 kg/s)

735°F (390°C)

207.5 psia (1425 kPa)

(Max. corrected to 15-_ 0 2)

Distillate
"(ppmv_

NO x 50

CO 75

Efficiency: 99.990 or greater

Smoke: SAE SN 20 or less

Pattern Factor: Less than 0.25

Idle

72 !b/sec (32.7 kg/s)

280°F (138°C)

43.0 psia (295 kPa)

1.0_ Fuel N
(ppmv)

140

75
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In the design of the basic features of the combustors, in the areas of rich

zone stoichiometry, aerodynamics, liner cooling, and residence times, an

attempt was made to reproduce the essential processes of the rich burning

concept as defined parametrically from bench-scale testing.

C. DESIGN FEATURES

The basic features of the rich-burn/quick-quench designs ;.-e summarized and

discussed below.

I. Arrangement

Three combustion zones are arranged in series, a fuel-rich primary

zone, a fuel-lean secondary zone, and tertiary dilution zone. The

tertiary zone was not utilized in bench-scale tests; however, bench-scale

tests revealed that carbon monoxide levels could not be contrL, Iled below

an ow.rall fuel-air ratio of 0.021 without the use of a tertiary zone.

2. Emissions Features

Four requirements for low pollutant levels have been identified from

bench-scale test results:

Smoke levels were heavily dependent upon the proper mixing and

combustion of fuel and air in the rich zone. Proper fuel atomization

was very important in the clean combustion of all fuels, as shown in

the results section of this report (Section I).

Minimal carbon monoxide levels require keeping the lean zone

fuel-air ratio above 0.021 downstream of the quench zone. The

temperature in this region must not be allowed to become excessive

as NO x formation from lean combustion could become predominant.

This implied the need to dilute the fuel-rich products of combustion
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in the rich zone to a fuel-air ratio slightly above 0.020. Con-

sequently, it is desirable to introduce only part of the remaining

airflow into the quench region, leaving the final quantity to be

introduced in a tertiary zone to achieve the final mixture. For

ideal operation of the combustor at low power settings, the quench

airflow area will have to be varied to maintain efficient combustion.

Fuel-bound nitrogen required longer residence times and rich zone

stiochiometry control as was shown in the bench-scale results. The

results showed that minimum NO x occured at rich zone equivalence
ratios near 1.55 and hot rich zone residence times of 35-45 millisec-

onds. Fuels containing no fuel-bound nitrogen displayed a levelling

off of NO x levels at rich zone stoichiometry levels above 1.55;

however, smoke levels could become unacceptable at equivalence

ratios exceeding this level.

.

Quench air - Must be admitted in a manner which promotes vigorous

mixing to insure a homogenous mixture for the complete combustion

of the remaining carbon monoxide.

Emission Signature

The emission signature of the bench-scale configuration is shown in

Figure 52. This signature was generated by keeping combustor airflow

constant and varying only the fuel flow. This signature is for a resi-

dual fuel with fuel-bound nitrogen (0.390), for fuels containing higher

levels of fuel-bound nitrogen a minimum NO x level is also obtained at a

front-end equivalence ratio of approximately 1.55 and then the NO x

levels begin to rise again more rapidly.

-66-



Power Systems Division CR165512
DOE/NASA/0149-1
GTR-3236

500 --

400 --

300-

X i
200 --

Z

100 --

0.008

d
A

Figure 52.

/
/

¢ \

I
/ \

\

\
\
\

\
\

\

I , I
0.012 0.016

OVERALLFUEL-AIRRATIO

, ,, I
0,020 0.024 0.028

Emission Signature ef Bench-Scale Baseline Configuration

68-95

4. Residence Time Requirements

Minimum NO levels were shown to decline with increasing primary zone
x

residence time with fuels containing fuel-bound nitrogen. Hot residence

times of approximately 40 milliseconds are required to keep NO x levels in

the 50 ppmv range for these fuels.

J Variable Geometry

This technique failed in the bench-scale tests and is considered to be a

high risk item for future development; however, if NO x levels are to be

kept at a minimum at all power conditions it would be necessary to use

this configuration. Although not considered in this study, the use of an

off-board combustor or silo burner with a direct-drive constant-speed

gas turbine-generator'would allow the flexibility of using multiple rich-

lean combustor elements with on-off fuel stagitqg to achieve turndown
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without ,ariable geometry. Fuel to the individual elements would be

turned on as power increases, with each element operating over only a

discrete fuel-air range. Sufficient downstream combustor length must be

provided to allow thermal mixing of burning and non-burning combustor

element effluents to achieve a low overall pattern factor.

The designs submitted in this report do not have variable geometry and

hence will not have low NO x levels at all power conditions. However,

they will have low pollutant levels at baseload and peak power settings.

Idle power settings will also have low pollutant levels due to lean burn-

ing in the primary zone. Cycling of the combustor between idle and

base power results in the rich zone varying in stoichiometry between

lean and rich conditions. With good fuel preparation (atomization and

mixing) and low smoke and low soot operation the problem of carbona-

ceous deposits building and removal during these cycles would not be

expected since even under rich conditions, the environment is still an

oxidizing one, as explained previously in the results for the carbon/

carbon liner test (Configuration 5). The formation of carbonaceous

deposits due to poor fuel preparation must be avoided since this could

lead to cycling between carburizing and decarburizing conditions which

would lead to liner corrosion and failure.

D. COMBUSTOR SIZING

1. Residence Time Considerations

The parameters which displayed the greatest effect on NO x emissions

were used to size the full-scale combustor. To achieve the low emissions

displayed by the bench-scale hardware, it was necessary to reproduce

the critical parameters and duplicate the same basic processes. The area

ratio of the rich-zone/quench-zone of Configuration 1 displayed the

lowest emissions, and it was felt that the area ratio would provide the

best mixing and performance.
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Initial rich-zone sizing calculations indicated that a can combustor con-

figuration, which would fit into the FT4-scale combustor sect.ion_ would

not be capable of producing emission levels as low as 50 ppmv of NOx
when burning fuels containing fuel-bound nitrogen. However, a can

combustor could be sized which could meet the EPA requirements of 140

ppmv of NOx. This conclusion is based on the bench-scale data of
Configurations 1, 2, and 13 in which the rich-zone length was varied as

shown in Figure 5:3. The results obtained were shown previously in
Figure 43 in terms of tradeoffs between rich zone hot residence time and

NOx concentrations corrected to 15&oxygen.

T
18 In.
(45.7 cm)

I

l _ 1115n.2cm)

121n.
(30.5 cm)

68-106

Figure 53. Bench-Scale Combustor - Various Rich-Zone Lengths Tested

. Stablity and Efficiency Considerations

The correlation of Odgens and Carrier were used for designing for stable and

efficient combustion (ref. 1). Figure 54 shows the correlation for combustion

stability and the design point for the full-scale can combustor. Based upon

this correlation_ the full-scale combustor will have very stable combustion

over a wide range of fuel-air ratios. Figure 55 shows the correlation for
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combustor recirc,Jlation zone efficiency and ttle design point for the full-scale

can combustor, This correlation only applies to time recirculation zone of the

burner ana do_s not apply to overall burner efficiency. Fig_lre 56 shows the

correlation for overall combustion efficiency of rich zones and the associated

design point for the full-scale can combustor, Also shown in the figures is

the range of values tested with bench-scale hardware.
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3. Combustor Aerodynamics, Emission Predictions, and Fuel Vaporization Model

This model was used to predict combustor flow fields and emission characteris-

tics performance of the full-scale combustor. The model employs a modular

approach to the prediction of combustor emissions. Submodels are used for

the internal flowfield, physical combustion, hydrocarbon thermochemistry, and

NO x kinetics. The parabolic region of the internal flowfield for both can and

annular combustors are modeled with several streamtubes, which exchange

mass and energy via a turbulent eddy viscosity model. The recirculation

zone is modeled as an embedded well-stirred reactor. Stabilization of this

primary combustion region is through either flow or bluff body flameholding.

The physical combustion model incorporates a fuei droplet vaporization model

and a droplet burning model. It is assumed that fuel droplets are 'miformally

distributed within a streamtube, that interaction between burning droplets is

negligible, and that fuel droplets within a given streamtube are adequately

described by a single value of Sauter Mean Diameter (SMD). The droplet

burning model approximates the combustion of fuel vapor immediately following

vaporization from injected fuel droplets in the early stages of combustion in

the primary zone. The hydrocarbon thermochemistry model is a quasi-global

model which provides for partial equilibrium products of combustion. The

rate constants for these quasi-global reactions are obtained by fitting these

reactions to the results of the full kinetics, perfectly stirred reactor, solution

over a range of initial temperatures, pressures and fuel-air ratios. This

system provides for the rate-controlled conversion of raw fuel-air mixture to

partial equilibrium products both directly and through an unburned hydro-

carbon intermediate. Subsequent conversion to full equilibrium products is

controlled by a single reaction. The combustion temperature species con-

centrations are determined by interpolation between the partial and full equi-

librium states. The model [or the formation of the oxides of nitrogen is basi-

cally the Zeldovich m.,chanism, modified by the addition of the reaction be-

tween the species N and OH (ref. 2). The model is capable of handling

fuel-bound nitrogen according to the Fenimore mechanism (ref. 3).
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Figure 57 illustrates the results of the model predictions for the full-scale can

combustor. The predictions are slightly lower than bench-scale results would

indicate for fuels containing fuel-bound nitrogen, and slightly higher" For

fuels with no fuel-bound nitrogen. This is due to the fact that the kinetic

reactions are not completely understood and would require analysis beyond

the scope of this program. For this reason, the results of the bench-scale

test results were heavily relied upon for the design of the full-scale com-

bustors.
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Predicted NO x for the Full-Scale Can Combustor Design

The aerodynamics of the RBOQ combustor differ from the conventional com-

bustor. It must be designed for an operating point where the prima-y zone

is fuel-.rich and the equivalence ratio must be controlled. The airflow distri-

bution is determined by several factors, including the relative areas of each

section, the pressure/velocity distribution of the approach airflow, and the

internal geometry of the combustor.
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The RBQQ full-scale combustor must have a necked down quench region

where locally high velocities are present to produce vigorous mixing. Signifi-

cant mixing losses are present in this section and these losses were accounted

for in determining the requirea airflow splits. These mixing losses are desir-

able to provide a homogeneous mixture to combust the remaining carbon mono-

xide from the rich zone.

Figure 58 displays the predicted pressure drops throughout the RBQQ com-

bustor. Note that high pressure drops are expected across the quench

section.
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4. Rich Zone Geometry

Because of the problems encountered in early bench-scale tests with the

prerrlix tube arrangementt the carburetor tube with recessed swirler was

chosen for the front-end of the combustor. This type of arrangemen( has

shown consistent ability to provide high performance and low pollutant levels

throughout the bench-scale testing effort. The premix tube, the preburner,

and the graduated air addition concepts displayed either poor performance or

durability problems. Figure 59 displays these concepts.

RECESSEDSWIRLER PREBUR_ER

PREMIX TUBE GRADUATED AIR ADDITION
68-I08

Figure 59. Various Front-End Configurations Tested

Consideration was also given to fuel nozzle selection which fits into the

swirler in the combustor front end. Two fuel nozzle types were tested, an

air boost which requires external compressed air and an air blast which

utilizes combustor inlet air to atomize the fuel (Configurations 13 and 14,

respectively). NO x data from these two tests was shown previously in

Figures 38 and 41. Smoke data indicated that the air-blast fuel nozzle was

slightly better on residual fuel. However, these fuel nozzles may operate

differently when scaled-up to full engine conditions, thus, it was felt both
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types should be tested at full-scale conditions. The recessed swirler can be

easily replaced during testing a:_d the air-blast swirler/fuel nozzle combination

installed. All concepts presented in this report show the air-boost fuel

nozzle installed to simplify the discussion.

Considerations of combustion efficiency (which essentially is the attempt to

control carbon monoxide emissions at the exhaust) led to the conclusion that a

tertiary combustion dilution zone was required. As shown previously in

Figure 8, carbon monoxide emissions can be kept to a minimum if the quench

zone fuel/air ratio can be kept above 0.020 so that sufficient temperature is

available for the oxidation process. Unburned hydrocarbon emissions were

not a problem during bench-scale tests and are not expected to affect burner

efficiency in the full-scale cornbustor.

. Rich Zone Cooling Design

After consideration of the sizing and basic features of the full-scale combus-

tor, subsequent design work was directed toward cooling the rich zone wall.

Bench-scale testing indicated that the wall temperature had little or no effect

on NO x emissions, and in a combined-cycle power plant steam is readily avail-

able for cooling the rich zone wall.

Analytical efforts were undertaken to design a steam cooled combustor liner

compatible with the FT4 engine; cycle. To meet this requirement, the heat

load to the rich zone wall was calculated assuming the most severe condition

(,stoichiometric flame temperature) at the peak engine operating pressure and

inlet temperature. The rich zone heat release rate was calculated to be

5.4 x 106 Btu/h-ft 3 atm (55.9 x 106 W/m _ atm). Results indicate that a

steam flow of 1.84 Ib/s (0.83 Kg/s) at a pressure of 150 psia (1030 kPa) is

sufficient to cool the metal to 1500°F (815°C), with a steam exit (superheat)

temperature of 800°F (426oC).
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The bench-scale results have shown that minimum NOx levels occur when the

primary zone equivalence ratio is al_proximately 1.55. This corresponds to

approximately 20_o of total burner air'flow in the rich-zone combined with total

burner fuel flow, indicating that the effective area of the recessed swirler

must be in. the range of 2090 of total burner effective area.

7. Quench Zone Area Requirement_

The quench zone area had to be such as to limit the quench exit fuel-air

ratio to an allowable range. As stated previously, a fuel-air ratio of 0.020 or

greater is necessary to insure limiting the carbon monoxide emissions from the

products of rich combustion. When sizing these slots, the reduced static

pressure in the throat of the quench section, due to the accelerating fluid

stream from the rich zone was taken into account.

8. Tertiary Zone Area Requirements

The remaining effective area of the combustor was utilized in the tertiary

zone for cooling and dilution.

E. FUEL PREPARATION

During the course of testing the bench-scale hardware, fuel preparation was

found to play an extremely important role in both NO x emissions and smoke

characteristics. As was shown previously, boost air played a very important

role in smoke levels when the air-boost fuel nozzle is utilized. If the air and

fuel entering the rich zone have not been sufficiently mixed, local pockets of

stoichiometric burning are possible with resultant high NO x levels combined

with very rich pockets and high smoke levels.
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It has been shown that the recessed swirler design provides a near homogen-

ous, well-atomized mixture into the rich zone. Limited testing with the air-

blast design also displayed excellent results. Both of these concepts are

recommended for further evaluation in full-scale combustors.

Fuel atomization has been shown to play an important part in combustor

performance. Figure 60 shows a correlation for the effect of boost air on

droplet size. During the course of bench-scale testing, increasing boost air

displays a significant reduction in smoke_levels as shown in Figure 16.
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Correlation Effect of Boost Air on Droplet Size

F. COMBUSTOR DESIGN FINAL PARAMETERS

The above review and analysis led to the first full-scale combustor design

which has the following basic features:
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• A centrally rnountecl carburetor tube with recessed swirler having a

scaled-up area schedule similar to that used in the bench-scale tests.

• A primary zone length was provided which will meet the minimum EPA

NO x regulations. This length was based on bench-scale rich zone resi-

dence time results.

• A rich-zone cooling scheme was provided which will supply long life to

the combustor.' Analysis indicates that a steam cooled wall will properly

cool the combustor rich zone wall. Water cooling was also considered,

since it was used in the bench scale tests.

• A quick-quench section with an area ratio of 2.77 to 1 was provided,

matching the value from Configuration 1 in the bench-scale tests.

• A lean-burn sec, ,n was provided to allow for the oxidation of CO to

CO2. The design fuel/air ratio at base load in the lean burn section is

0.021 to allow for minimal CO emissions.

• The tertiary zone was adapted from the present engine transition duct

and is air-cooled.

The burner configuration, shown in Figure 61, consists of a double-wall

primary liner made of cylindrical/conical pieces. These pieces are separated

by a string of weld wires to guide the steam coolant flow. This concept was

successfully tested with bench-scale hardware using water as the coolant, no

structural damage or erosion of the inner wall was noted throughout the

bench-scale tests. Both convective and radiative heat transfer processes

were included in the analysis. Predictions indicate that the proper flowrate

within the convective cooling passage will easily cool th__ walls to acceptable

levels.
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The following is a breakdown of combustor operating paramet_.rs for the single

can burner.

Single Can Burner at Base Condition

Fuel Nozzle
Liner Material
Burner Airflow
Inlet Pressure
Inlet Temperature
Front End Swirler

Effective Area
Quench Slot Area
Tertiary Zone Area
Burner Pressure Loss
Rich Zone Wall Temperature
Lean Zone Wall Temperature

Airblast with Airboost Alternative
Hastalloy X
32.1 !b/s (14.56 Kg/s)
207.5 psia (1426 kPa)
735°F (390oC)

5.74 in 2 (37.03 cm)
19.90 in 2 (128.4 cm 2)
7.25 in 2 (46.8 cm 2)
3.0 
1500°F (816°C)
1500°F (816°C)

Heat Release Rate (Rich-Zone) 5.4 x 10s Btu/hr-ftS-atm

W
( 55'9 x 10s m;' ATM )

Coolant Flow (Stream) 1.84 Ib/s (0.83 kg/s)

The following shows the individual zone stoichiometries at the indicated power
setting:

Power Fuel Flow Air Flow Rich-Zone Lean Zone Tertiary Zone
S_ (_ph,kg/h) (pph,kg/h) Fuel-Air/_ FueI-Air/_ FueI-Air/_

Idle 2020, 916 72, 32.7 0.045/0.65 0.010/0.14 0.008/0.12

5MW 5860, 2658 148, 67.1 0.063/0.91 0.014/0.20 0.011/0.16

15MW 11260, 5106 207, 93.9 0.087/1.25 0.019/0.28 0.015/0.22

Base 17276, 7835 257, 116.5 0.107/1.55 0.024/0.35 0.019/0.27

Peak 18429, 8350 263, 119.3 0.112/1.61 0.025/0.36 0.0195/0.28
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G. ALTERNATIVE FULL-SCALE COMBUSTOR DESIGN

An alternative full-scale combustor was designed which will meet the minimal

50 ppmv levels of NO x production. The configuration is a full annular

burner. The maior difference between this combustor and the can combustor

is in rich zone hot residence time, This design will require more development

effort than the single-can engine burner; howevert fuels containing high

concentrations of fuel-bound nitrogen can be burned with low pollutant levels

in this combustor. The design includes provisions for the use of steam

coolant,

The full annular combustor design is shown in Figure 62 with Figure 63

showing a fronted view of the swirler arrangement. This burner will require

considerably more development work than the can .combustor arrangement

shown previously; however, it will provide lower emissions levels. The

following is a breakdown of combustor operating parameters for the full annu-

lar burner:

Full Annular Burner at Base Condition
Fuel Nozzle Airblast with Airboost Alternative
Liner Material
Burner Airflow
Inlet Pressure

Inlet Temperature
Front End Swirler

Effective Area
Quench Slot Area
Tertiary Zone Area
Burner Pressure Loss
Rich Zone Wall Temperature
Lean Zone Wall Temperature

Hastalloy X
257 lb/s (116.5 kg/s)
207.5 psia (1425 kPa)
735°F (390°C)

45.92 in 2 (296 cm 2)
159.2 in 2 (1027 cm z)
58 in 2 (374 cm 2)
3.0%
1500°F (815°C)
1500°F (815°C)

Heat Release Rate (Rich-Zone) 3.31 x 106 Btu/h-ft3-atm

34.3 Wm_ATM )

Coolant Flow (Steam) 14.72 Ib/s (6.47 kg/s)
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SECTION A-A

68-99

Figure 63. Front View of Annular Combustor

Although the annular burner design requires more engine disassembly to

change combustm's than the can design, when compared to present day air

cooled burners, engine disassembly would n.ot be required as often due to the

long life expectancy of the liner.

The individual zone stoichiometries at different pov.,er settings is the same as

the can burner design shown previously.
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